Vigilance II Monitor

RVEF

Preload
E Edwards Lifesciences ${ }^{5}$

Capture every aspect of hemodynamic status

Edwards

シンプルに使える， ストレートに分かる。

The most complete picture of hemodynamic performance

血行動態モニタリングに必要な情報を， カラーで見やすく表示。 スピードが求められる現場での適切な判断に貢献します。

アドバンス スワンガンツカテーテルとの
組み合わせにより＊1，
患者生存への鍵となる
酸素供給パラメータを適切に測定。
心機能の変化を素早く察知し，
迅速な対応を可能にします。

パラメータ	得られる情報
$\mathrm{SV} \mathrm{V}_{2}$（混合静脈血酸素飽和度）	Oxygen Balance
EDV （拡張終期容量）	＊2
SVR （体血管抵抗）	Preload
CCO （連続心拍出量）	Afterload
SV （一回拍出量）	Contractility
RVEF（右室駆出率）	Contractility

[^0]ストレートに分かる

カラーコーディング された数値とグラフ

表示される数値とグラフ上のトレンド波形が同色で関連付けられているため， すばやく認識できます。

Edwards Lifesciences＇＂

STAT BOX					（1：30
4.4	4.5	4.7	4.5	4.3	3.
99	97	99	100	105	10
49	50	52	50	48	

3.43 kg の軽量化を実現。 ロールスタンドに載せての移動も行えます。

選択表示できるパラメータ
10個のパラメータから任意4個まで選択可能。画面をカスタマイズ でき，必要な情報のみを表示できます。

STAT表示

STAT表示を選択することにより，CCO／CCI，EDV／EDVI，RV細かな変動を表示。トレンドグラフとSTATグラフを選択表示できま

Vigilance II

Sv̄O2のキャリブレーション，各パラメータのアラーム設定など，基本的な操作はナ ビゲーションノブを「回して押す」だけ。このナビゲー ションノブに操作を集約させ
 ることで，大きな画面サイズ も確保しました。

日本語での表示

アラームメッセージやヘルプ表示もすべて，日本語で表示されます。

相関グラフの作成も可能
21個のパラメータのうち，2個のパラメータの関係を比較することができます。

補助パラメータ連続表示補助的な測定／算出パラメータを最大 8 個 まで表示できます。

It＇s Edwards Quality

■EDV：拡張終期「容量」の測定
通常，プリロードはRAP（CVP）やPAWPが指標として用いられています。しかし，フランク・スターリングカーブ （図A）に示されているように，圧と容量の関係は1：1 ではありません。特に右室は心筋壁が薄く，圧に対す る反応が鈍いため，圧パラメータのみではプリロードの評価が難しいことがあります。

ビジランスヘモダイナミックモニターはCCOの技術を応用し，連続的に右室のEDV，EFを測定することが できます。RAPやPAWPなどの圧パラメータに「容量」 パラメータを加えることで，プリロードのより適切な評価と循環管理を支えます。
※外部モニターからの心電図の取り込みと，CEDV測定可能な スワンガンツカテーテルが必要です。

■CCO：連続心拍出量の測定

ビジランスヘモダイナミックモニターはスワンガンツカ テーテルを介して，断続的に血液に熱シグナルを加え，血液温度変化を測定しています。熱シグナルに対する血液温度の変化を正確に捉えることは，CCOの正確 な測定に欠かせません。しかし，肺動脈の血液温度は呼吸や輸液，血液流量の変化をうけて微小な温度変化を生じています。これらは温度測定にとってノイズで あり，CCO測定誤差の原因となります。CCO測定の ためには熱シグナルによる温度変化とこれらのノイズ を区別することが重要な課題となっています。

エドワーズのCCO測定技術は，体内のあらゆるノイズ と測定に必要な熱シグナルを明確に区別するため， 10通りの熱シグナルを用い，より正確なCCO測定を可能にしています。（図B）

最適な治療のための

ヘモダイナミック管理アルゴリズム

へモダイナミックスの全体像を把握することにより， Pinsky－Vincentアルゴリズムのような最適な治療の選択が可能になります。

■図A フランク・スターリングカーブ

図Bノイズパワースペクトルと
エドワーズが用いたパワースペクトル

Pinsky－Vincentアルゴリズム

ビジランスヘモダイナミックモニター スペック

品 番	VIG2
本体寸法	24.1 cm （高さ）$\times 29.2 \mathrm{~cm}$（幅）$\times 20.8 \mathrm{~cm}$（奥行き）
本体重量	3.43 kg
電 源	100VAC，50／60Hz，1．0A（最大値）

品番	品名
OM－2	オプティカル・モジュール
70－CC2	カテーテル接続ケーブル
VIG2S	ロールスタンド
VIG2AP	アダプタープレート

CEDV 測定スワンガンツカテーテル スペック

品番	CCO／CEDV	CCOmbo／CEDV	CCOmbo／CEDV／VIP
	177HF75	774HF75	777HF8
カテーテル有効長	110	110	110
カテーテル・フレンチｻイズ	7．5F	7．5F	8F
バルーン膨張容量	1.5 cc	1.5 cc	1.5 cc
膨張時バルーン径	13 mm	13 mm	13 mm
収縮時バルーン径	8F	8F	8F
適合イントロデューサー径	8 または 8.5 F	8.5 または 9F	9 F
サーミスター	4 cm	4cm	4 cm
側孔位置（先端から）サーマル・フイラメント	14～25cm	$14 \sim 25 \mathrm{~cm}$	14～25cm
側孔位直（先端から）注入用側孔	26	26	26
輸液用側孔	30	－	30
適合ガイドワイヤー径	0．025（先端）	0.021 （先端）	0.021 （先端）
カテーテル・マーカー間隔	10	10	10
先端孔	$25 \mathrm{~Hz} / 2.1: 1$	$25 \mathrm{~Hz} / 2.1: 1$	$26 \mathrm{~Hz} / 2.1: 1$
固有周波数／振幅比 注入用側孔	$33 \mathrm{~Hz} / 2.5: 1$	$45 \mathrm{~Hz} / 2.71$	$40 \mathrm{~Hz} / 2.6: 1$
輸液用側孔	$45 \mathrm{~Hz} / 2.7: 1$	－－－－－－－－－－	$40 \mathrm{~Hz} / 2.5: 1$
サーミスター抵抗値（ $37^{\circ} \mathrm{C}$ ）	14004	14004Ω	14004
サーミスター抵抗変化（370C）	$520 \Omega /{ }^{\circ} \mathrm{C}$	$520 \Omega /{ }^{\circ} \mathrm{C}$	$520 \Omega /{ }^{\circ} \mathrm{C}$
混合静脈血酸素飽和度（ ${\mathrm{Sv} \mathrm{O}_{2} \text { ）}}^{\text {a }}$	\times	\bigcirc	\bigcirc
測定可能項目 連続心拍出量（CCO／CCI）	\bigcirc	\bigcirc	\bigcirc
連続拡張終期容量（CEDV／CEDVI）	\bigcirc	\bigcirc	\bigcirc

※全てのスワンガンツカテーテルの仕様については，スワンガンツカテーテルカタログをご覧ください。

販売名	承認番号	
ビジランスヘモダイナミックモニター $21700 B Z Y 00257$ 心拍出量測定装置 ビジランスヘモダイナミックモニター 付属品 オプティカル・モジュール $21700 B Z Y 00257$ オキシメトリーモジュール スワンガンツCCO／CEDV サーモダイリューションカテーテル $21300 B Z Y 00160$ サーモダイリューションカテーテル プリセップCVオキシメリーカテーテル $21800 B Z Z 10117$ CVオキシメトリーカテーテル ペディアサット・オキシメトリーカテーテル $22000 B Z X 00237$		

\footnotetext{
※記載事項は予告なく変更されることがありますので予めご了承ください。
© 2011 Edwards Lifesciences Corporation．All rights reserved．EW－2011－011 1105＿2＿5000
製品に関するお問い合わせは下記にお願い致します。

[^0]: ＊1 ベーススワンガンツカテーテルは断続的な心拍出量と，
 左心室の拡張終期圧を表す
 PAWP（肺動脈楔入圧）のみ測定できます。
 ＊2右室の連続拡張終期容量です。

